На главную страницу           К полному списку слов на букву В

         Предыдущая страница                    Следующая страница

А   Б   В   Г   Д   Е Ё   Ж   З   И Й   К   Л   М   Н   О
П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Щ   Э   Ю   Я

 
Взаимная диаграмма усилий  * 
 
Взаимная индуктивность  * 
 
Взаимная индукция  * 
 
Взаимно однозначное соответствие  * 
 
Взаимно простые числа  * 
 
Взаимности перемещений принцип  * 
 
Взаимности работ принцип  * 
 
Взаимности реакций принцип  * 
 
Взаимодействие гравитационное  * 
 
Взаимодействие межмолекулярное  * 
 
Взаимодействие скважин  * 
 
Взаимодействия фундаментальные  * 
 
Взаимоиндукция  * 
 
                                         

Взаимная диаграмма усилий,
диаграмма Максвелла-Кремоны

- графический метод определения усилий в стержнях плоских ферм. Основан на рассмотрении условий равновесия узлов фермы и заключается в поочерёдном построении замкнутых силовых многоугольников, стороны которых параллельны соответствующим стержням фермы. В настоящее время применяется редко, так как развитие вычислительной техники позволило широко использовать аналитические методы расчётов.
 
 
♦  Взаи́мная диагра́мма уси́лий
♦  Диагра́мма Ма́ксвелла-Кремо́ны
 
Взаимная диаграмма усилий - графический метод определения усилий в стержнях плоских ферм.  

Взаимная индуктивность,
коэффициент взаимной индуктивности

- коэффициент связи между потокосцеплением взаимной индукции одной электрической цепи (контура) и силой тока в другой.
                 M12 = Ψ12 / I2
                 M21 = Ψ21 / I1
                 M12 = M21 = M
Единица измерения - генри (Гн).
Величина взаимной индуктивности зависит от формы, размеров и взаимного расположения электрических цепей, а также от магнитной проницаемости среды и магнитопроводов. Наличие магнитной связи между контурами проявляется в том, что при изменении тока в одном из них наводится ЭДС в другом. Согласно закону электромагнитной индукции
                 E1 = M ⋅ dI2/dt
                 E2 = M ⋅ dI1/dt
Взаимная энергия магнитного поля токов I1 и I2:
                 W12 = ± M ⋅ I1 ⋅ I2
 
 
♦  Взаи́мная индукти́вность
♦  Коэффицие́нт взаи́мной индукти́вности
 
 
 
 
Взаимная индуктивность - коэффициент связи между потокосцеплением взаимной индукции одной электрической цепи и силой тока в другой.
 

Взаимная индукция,
взаимоиндукция:

  • - передача эмоций от человека к человеку с наличием обратной связи, усиливающей эмоции;
     
     
     
     
     
     
  • - явление, при котором переменный ток I1 в одном проводнике (контуре) индуцирует (наводит) ЭДС E2 в другом.
    Частный случай электромагнитной индукции, лежащий в основе работы трансформаторов.
    Согласно закону электромагнитной индукции
                     E2 = M ⋅ dI1/dt ,
    где M - коэффициент взаимной индуктивности (взаимная индуктивность).

 
 
 
 
 
♦  Взаи́мная инду́кция
♦  Взаимоинду́кция
 
 
 
Взаимная индукция - передача эмоций от человека к человеку с наличием обратной связи, усиливающей эмоции.
 
 
 
Взаимная индукция - явление, при котором переменный ток в одном проводнике индуцирует ЭДС в другом.
 

Взаимно однозначное соответствие

- соответствие между элементами двух множеств, при котором каждому элементу первого множества соответствует один определённый элемент второго множества, а каждому элементу второго множества соответствует один определённый элемент первого множества.
 
 
♦  Взаи́мно однозна́чное соотве́тствие
 
Взаимно однозначное соответствие - соответствие между элементами двух множеств, при котором каждому элементу первого множества соответствует один определённый
	 элемент второго множества, а каждому элементу второго множества соответствует один определённый элемент первого множества. Взаимно однозначное 
	 соответствие - соответствие между элементами двух множеств, при котором каждому элементу первого множества соответствует один определённый элемент второго множества, а каждому элементу второго
	  множества соответствует один определённый элемент первого множества.

Взаимно простые числа

- натуральные числа, у которых нет общих делителей, отличных от 1. Например, 21 и 25, 30 и 37, 101 и 103.
Два соседних натуральных числа всегда являются взаимно простыми. Например, 3 и 4, 7 и 8, 37 и 38.
Простые числа всегда взаимно просты. Например, 3 и 5, 7 и 13, 37 и 47.
 
 
♦  Взаи́мно просты́е чи́сла
 
Взаимно простые числа - натуральные числа, у которых нет общих делителей, отличных от 1. Взаимно простые числа - натуральные числа, у которых нет общих делителей, отличных от 1.

Взаимности перемещений принцип,
теорема Максвелла о взаимности перемещений

- принцип (теорема), согласно которому при упругой деформации тела перемещение точки приложения первой единичной силы, вызванное действием второй силы, равно перемещению точки приложения второй единичной силы, вызванному действием первой единичной силы:
           δik = δki
Принцип (теорема) о взаимности перемещений является частным случаем принципа взаимности работ. Используется в строительной механике и в сопротивлении материалов при расчётах упругих систем.
 
 
♦  Взаи́мности перемеще́ний при́нцип
♦  Теоре́ма Ма́ксвелла о взаи́мности перемеще́ний
 
 
Взаимности перемещений принцип - принцип, согласно которому при упругой деформации тела перемещение 
	точки приложения первой единичной силы, вызванное действием второй силы, равно перемещению точки приложения второй единичной силы, вызванному действием первой единичной силы.
 

Взаимности работ принцип,
теорема о взаимности работ,
теорема Бетти

- теорема (принцип), согласно которой для линейно деформируемого тела работа внешних сил первого состояния на возможных (виртуальных) перемещениях второго состояния равна работе внешних сил второго состояния на возможных (виртуальных) перемещениях первого состояния
          Aik = Aki
      Fi ⋅ Δik = Fk ⋅ Δki
Следствием принципа взаимности работ являются принципы взаимности перемещений и реакций, применяемые в строительной механике и в сопротивлении материалов при расчёте упругих систем.
 
 
♦  Взаи́мности рабо́т при́нцип
♦  Теоре́ма о взаи́мности рабо́т
♦  Теоре́ма Бе́тти
 
 
 
 
 
Взаимности работ принцип - теорема, согласно которой для линейно деформируемого тела работа внешних сил первого состояния на возможных
	 (виртуальных) перемещениях второго состояния равна работе внешних сил второго состояния на возможных (виртуальных) перемещениях первого состояния.
 
 
 
 
Теорема о взаимности работ - теорема, согласно которой для линейно деформируемого тела работа внешних сил первого состояния
	  на возможных (виртуальных) перемещениях второго состояния равна работе внешних сил второго состояния на возможных (виртуальных) перемещениях первого состояния.

Взаимности реакций принцип,
теорема Рэлея о взаимности реакций

- теорема (принцип), согласно которой для линейно деформируемого тела реакция первой связи от единичного смещения второй связи равна реакции второй связи от единичного смещения первой связи
          rik = rki

 
 
♦  Взаи́мности реа́кций при́нцип
♦  Теоре́ма Рэле́я о взаи́мности реа́кций
 
Взаимности реакций принцип - теорема (принцип), согласно которой для линейно деформируемого тела реакция первой связи от единичного смещения второй связи
	 равна реакции второй связи от единичного смещения первой связи.  

Взаимодействие гравитационное,
гравитация,
тяготение

- взаимное притяжение между любыми двумя телами, определяемое их массами и расстоянием между ними. Согласно закону всемирного тяготения Ньютона две материальные частицы притягивают друг друга с силой F, прямо пропорциональной их массам m1 и m2 и обратно пропорциональной квадрату расстояния r между ними:
             F = G⋅m1⋅m2 / r²
Коэффициент пропорциональности G = 6,672⋅10-11 Н⋅м²/кг² называют гравитационной постоянной.
Сила, действующая на некоторую частицу со стороны нескольких других частиц, равна геометрической сумме сил, действующих со стороны каждой частицы. Тяготение между реальными материальными телами можно определить, вычислив сумму сил тяготения отдельных малых частиц, на которые можно мысленно разбить тела. Шарообразное тело притягивает точно так же, как материальная точка, если расстояние r измеряется от центра шара.
Теория тяготения Ньютона справедлива, если взаимодействие относительно слабое и тела движутся со скоростями, значительно меньшими скорости света. Тяготение тел при сильных взаимодействиях и скоростях, близких к скорости света, рассматривается в общей теории относительности Эйнштейна.
 
 
♦  Взаимоде́йствие гравитацио́нное
♦  Гравита́ция
♦  Тяготе́ние
 
 
 
 
 
 
Взаимодействие гравитационное - взаимное притяжение между любыми двумя телами, определяемое их массами и расстоянием между ними.
 

Взаимодействие межмолекулярное

- взаимодействие электрически нейтральных молекул или атомов. Силы взаимодействия, называемые силами Ван-дер-Ваальса, имеют электрическую природу. Межмолекулярным взаимодействием определяется существование жидкостей и молекулярных кристаллов, а также объясняется отличие реальных газов от идеальных.
 
 
♦  Взаимоде́йствие межмолекуля́рное
 
Взаимодействие межмолекулярное - взаимодействие электрически нейтральных молекул или атомов.  

Взаимодействие скважин,
интерференция скважин

- изменение дебитов скважин (нефтяных, газовых, водных) и их забойных давлений под влиянием изменений режимов работы соседних скважин.
 
 
♦  Взаимоде́йствие сква́жин
♦  Интерфере́нция сква́жин
 
Взаимодействие скважин - изменение дебитов скважин и их забойных давлений под влиянием изменений режимов работы соседних скважин. Интерференция скважин - изменение дебитов скважин и их забойных давлений под влиянием изменений режимов работы соседних скважин.

Взаимодействия фундаментальные

- основные виды физических взаимодействий, которые определяют все остальные виды физических взаимодействий в природе. В физике выделяют 4 вида фундаментальных взаимодействий (в порядке убывания интенсивности): сильное, электромагнитное, слабое и гравитационное.
 
 
♦  Взаимоде́йствия фундамента́льные
 
Взаимодействия фундаментальные - основные виды физических взаимодействий, которые определяют все остальные виды физических взаимодействий в природе.  
 
      Трудовая жизнь автора сайта пришлась на "эпоху перемен". Пенсию назначили 6328 рублей. 
    Стараюсь многолетний разнообразный инженерный опыт использовать для создания самого полного и нужного всем политехнического словаря-справочника.
 
       
 
 
               Следующая страница
 
               Предыдущая страница
 

 
          На главную страницу           В начало страницы
 
 
А   Б   В   Г   Д   Е Ё   Ж   З   И Й   К   Л   М   Н   О   П   Р   С   Т   У   Ф   Х   Ц   Ч   Ш   Щ   Э   Ю   Я  
 

Valid XHTML 1.0 Transitional